Thursday 10 November 2016

LG Electronics and Volvo to link up for developing future electric cars EV


Sweden-based vehicle manufacturer Volvo Car Group will join hands with South Korea’s LG Electronics Inc. to develop future vehicles such as self-driving and electric cars with an aim to expand its presence in the burgeoning new-generation vehicle market.

Volvo is most likely to establish a strategic partnership with LG Electronics to co-develop key technologies from an early stage rather than simply receive related components from the Korean tech giant.

According to multiple industry sources on Friday, Hakan Samuelsson, president and chief executive of Volvo Car Group, visited LG Electronics’ campus in Cheongna, Incheon, where the company’s vehicle components division is located. Samuelsson, who arrived in Seoul on Wednesday, met with Lee Woo-jong, chief executive and president of vehicle components division at LG Electronics and toured around the campus and research and development facilities.

LG Electronics have collaborated with General Motors to develop and supply 11 key components and systems including driving motors and invertor battery packs for GM's fully electric Chevrolet Bolt. With 400 kilometers range on a full charge, the Bolt is gaining industry attention as it is competitively priced at $30,000 and raises the bar on price and range for mass production electric cars.

Similarly, Volvo plans to launch an all-electric vehicle in 2019 with a range of 500 kilometers or more on a full charge. It is planning for LG to become its electronics pillar. Moreover, LG Chem is a leader in electric vehicle battery technology.

Key management officials at Volvo’s parent company Zhejiang Geely Holding of China also met with LG Chairman Koo Bon-moo last month and visited the company’s vehicle component division in Incheon.

Monday 13 June 2016

Acura NSX supercar 2017



Acura will field a pair of 2017 Acura NSX supercars in the 100th Anniversary of the running of the Broadmoor Pikes Peak International Hill Climb on June 26, marking the North American racing debut of Acura's next-generation NSX: the pinnacle expression of Acura Precision Crafted Performance and the only supercar made in America.


The two Acura NSX supercars will compete in the Time Attack 1 and 2 classes and will be piloted by brothers James and Nick Robinson, respectively, both from the company's North American engineering team. In addition, Acura will campaign an NSX-inspired prototype vehicle in the Electric Modified Class, featuring a further evolution of the experimental all-electric, 4-motor Super Handling All-Wheel Drive (SH-AWD) powertrain that won last year's Pikes Peak Challenge Exhibition class.
"Pikes Peak is like no other race in the world and offers a unique opportunity to showcase the power and performance of our products," said Jon Ikeda, vice president and general manager of the Acura Division. "We are excited for this year's 'Race to the Clouds' to test the endurance and engineering of the Acura NSX and our advanced powertrain technologies – as well as an expression of our racing spirit."


A team of North American R&D engineers has been working on both NSX entries, which feature the same three-motor Sport Hybrid Super-Handling All-Wheel Drive powertrain (Sport Hybrid SH-AWD) as the production NSX. This powertrain features a twin-turbo V6 engine mated to a 9-speed dual clutch transmission and Rear Direct Drive Motor, and a front Twin Motor Unit with a world's first electrically powered torque vectoring capability in the supercar realm. Modifications to the NSX competing in the Time Attack 1 class included chassis lightening and a custom high-flow racing exhaust.


The NSX competing in the Time Attack 2 class is a production car with the required safety equipment for competition. The Time Attack 1 NSX will be driven by James Robinson of the company's North American powertrain development group, who drove a first-generation NSX in the Pikes Peak Hill Climb from 2012 to 2015. His brother Nick Robinson, an engineer in charge of the new NSX's dynamic performance during its development, will drive the Time Attack 2 NSX. Nick is also the reigning PP250 winner from the 2015 Pikes Peak Hill Climb.

The supercar-inspired 4-Motor EV Concept will be driven by Tetsuya Yamano, who campaigned last year's CR-Z-based electric prototype. The EV Concept is the ultimate embodiment of the all-wheel-drive Electric SH-AWD powertrain featuring a world's first technology that enables four-wheel independent torque allocation. The Electric SH-AWD powertrain, an evolution of the CR-Z prototype powertrain, produces three times the total system output of last year's electric prototype and is mated to the NSX body.

As Official Pace Car sponsor, Acura will feature three pace cars – the NSX, the seven-passenger MDX performance-luxury SUV and the TLX sports sedan. President of Polyphony Digital and Producer of the Gran Turismo series Kazunori Yamauchi and Pikes Peak legends Randy Schranz and Leonard Vahsholtz will lead the field of 100 entrants to the top of the 14,115-foot Colorado peak.

For Pikes Peak race attendees, the NSX and other pace cars will appear at a number of pre-race activities, including the popular Fan Fest in downtown Colorado Springs, 5 to 10 p.m. MDT Friday, June 24.

Friday 13 May 2016

Next generation Amorphous Silicon (SiO) Li-ion Battery

Nissan Motor Co., Ltd. and Nissan Arc Ltd. announced today joint development of an atomic analysis methodology that will aid in boosting the performance of lithium-ion batteries, and ultimately extend the driving range of zero-emission electric vehicles.

The breakthrough was the result of a combined R&D effort between Nissan Arc Ltd., a Nissan subsidiary, Tohoku University, the National Institute for Materials Science (NIMS), the Japan Synchrotron Radiation Research Institute (JASRI), and Japan Science and Technology Agency (JST).
The analysis examines the structure of amorphous silicon monoxide (SiO), widely seen as key to boosting next-generation lithium-ion battery (Li-ion) capacity, allowing researchers to better understand electrode structure during charging cycles.

Silicon (Si) is capable of holding greater amounts of lithium, compared with common carbon-based materials, but in crystalline form possesses a structure that deteriorates during charging cycles, ultimately impacting performance. However, amorphous SiO is resistant to such deterioration.
Its base structure had been unknown, making it difficult for mass production. However, the new methodology provides an accurate understanding of the amorphous structure of SiO, based on a combination of structural analyses and computer simulations.

The atomic structure of SiO was thought to be inhomogeneous, making its precise atomic arrangements the subject of debate. The new findings show that its structure allows the storage of a larger number of Li ions, in turn leading to better battery performance.

“The invention of this new analysis method is essential to further develop the next generation of high-capacity lithium-ion batteries. It will certainly become one of our core technologies. The utilization of this analysis method in our future R&D will surely contribute to extending the cruising range of future zero-emission vehicles,” said Takao Asami, senior vice president of Nissan Motor Co., Ltd. and President of Nissan Arc Ltd.

Daniele Schillaci, executive vice president of Nissan Motor Co., Ltd., Global Sales & Marketing including Zero Emission Vehicle and Battery business, said the development was another proof point of Nissan’s commitment to innovation in advanced technologies.
“Nissan is exploring a wide range of energy sources for tomorrow’s vehicles, and we recognize our role in continuously investing in multiple technologies and intelligent mobility,” said Schillaci.

Thursday 28 April 2016

To develop EV Battery- "Ford, Xerox PARC and Oak Ridge" Team up

Xerox PARC today announced its ‘Co-Extrusion (CoEx) for Cost Reduction of Advanced High-Energy-and-Power Battery Electrode Manufacturing’ project funded by the U.S. Department of Energy’s (DOE) Office of Energy Efficiency and Renewable Energy (EERE). In collaboration with Oak Ridge National Laboratory (ORNL) and Ford Motor Company, the project will use PARC’s novel CoEx printing technology to fabricate thick higher energy and higher power battery electrodes with the end goal of enabling longer range and low cost electric vehicles.

The project goal is to demonstrate pilot-scale, electric vehicle (EV) pouch cells with a 20% improvement in gravimetric energy density (Wh/kg), and a 30% reduction in $/kWh costs. CoEx allows fine structures to be printed at high speed, and when applied to thick battery electrodes, it adds a new design dimension that can be used to enhance energy and power performance. This innovative approach has the potential to help make high performance and affordable electric vehicles (EVs) a reality.PARC will develop the inks and CoEx hardware required to fabricate a thick high energy and high power CoEx cathode electrodes. ORNL will assist PARC with the matching anode development, anode and CoEx cathode coating at pilot scale, and electrochemical performance optimization in automotive-relevant lithium-ion pouch cells. The bulk of this research will occur at the DOE Battery Manufacturing R&D Facility (BMF) at ORNL, which was designed in 2011 with these types of projects in mind. PARC will design a custom CoEx apparatus that will be integrated into one of the research coating lines at the BMF.

“The PARC team is excited to start this collaboration with ORNL and Ford. CoEx has the potential to make higher capacity EV batteries possible through the creation of two and three dimensional structures which can enhance lithium-ion pathways in ultra-thick battery electrodes. Our goal is to fabricate EV pouch cells that are higher in energy and power than conventional, with a path towards a reduction in $/kWh costs for EVs”said project principal investigator and PARC CoEx technical lead Dr. Corie Cobb.

“PARC and ORNL have a track record of working successfully together, and their collaboration on this project will transform the way lithium-ion electrode coatings are made and perform under high discharge rates,” said ORNL project lead David Wood.

PARC’s CoEx project is part of a portfolio of research within the PARC Energy Technology Program aimed at developing practical solutions to make clean and abundant energy available across a wide range of applications. This includes a focus on improving energy storage for EVs, consumer electronics, and electric grid support through better ways to make, monitor, and manage batteries.“By leveraging our deep background in printing, PARC has developed the CoEx printing process to enable higher performance solar cells, fuel cells and batteries.,” said Scott Elrod, Vice President of PARC’s Hardware Systems Lab. “By applying CoEx to printed batteries, we can create optimal structures that boost power performance without compromising energy storage. It’s an efficient and a lower-cost approach that can be applied to the mass manufacturing of batteries.”